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Abstract

In this paper we study the relationship of several ideals of the free special Jordan algebra. In
particular, we show that the ideal of hearty n-tad eaters coincides with that of imbedded n-tad
eaters over an arbitrary ring of scalars. In the linear case, we show that they coincide with the
ideal of n-tad eaters. The distance between the different eater submodules and their cores is also
studied. © 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: 17C05; 17C99

0. Introduction

The ideals of n-tad eaters play a central role in the description of strongly prime
linear Jordan algebras [6]. The extension of [6] to quadratic algebras [4] requires
a combinatorial extra-effort in the form of new ideals of polynomials, namely, the
so-called imbedded n-tad eaters and hearty eaters. A nonzero hermitian ideal of the
free special Jordan algebra is obtained by McCrimmon and Zelmanov in [4] with the
set of hearty pentad eaters, and several relations between the different sets of poly-
nomials are established. D’Amour gives analogues of hearty eaters for Jordan triple
systems in [1] and uses them in the study of strongly prime Jordan triple systems [2].

Our aim is to further investigate the relationship between n-tad eaters, imbedded
n-tad eaters and hearty n-tad eaters, as well as to study the distance between the
submodules consisting of these polynomials and the biggest ideals (the cores) con-
tained in them. With purely combinatorial techniques some equalities relating asso-
ciative and usual n-tads are given in Section 1. This allows us to show that the set E, of
n-tad eaters is always an outer ideal when » is odd (1.6) and to study in (1.9) the
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distance between consecutive E,, E,.; and their cores, extending some of the results
of [4]. In Section 2, imbedded n-tad eaters are studied with the help of the combina-
torial lemmas of the previous section. Namely, it is proved that the set of imbedded
n-tad eaters IE, is always an ideal when # is odd (2.7), as well as an analogue (2.8) of
(1.9). To simplify the argument we first show that imbedded n-tad eaters are exactly
those polynomials which eat associative n-tads (2.3), a fact which is also used to study
the connection between E, and IE,. Precedents of these results which have inspired
a part of this work can be found in [5, pp. 69-70]. In Section 3, the equality between
imbedded n-tad eaters and hearty n-tad eaters is established (3.6). Given an arbitrary
adic family F on the free special Jordan algebra, a realization of the free associative
algebra can be built (3.4), so that calculations with F can be reduced to associative
n-tads. The use of this model also justifies the simplified definition of adic family on
the free special Jordan algebra given in (3.1).

0.1. Preliminaries

Throughout this paper we will deal with an arbitrary ring of scalars ¢. Unless
explicitly said, the existence of € @ is not assumed. Our main reference for basic
results and terminology will be [4]. To make the text as self-contained as possible, we
will recall some basic facts.

0.1. A unital Jordan algebra over @ consists of a #-module J, a distinguished element
1eJ, and a quadratic map U :J — End,(J) such that

U, =14, UV s = Ve, Ui = Uy s Uy ,=UUU,
hold in all scalar extensions, where
Vx,yz = {Xyz} = Ux.zy (Ux.z = Ux+z - Ux - Uz)

A Jordan algebra is just a subspace J = (J, U,( )*) of some unital Jordan algebra
closed under the products U,y and the square

x?=U..
If e ® we can characterize these algebras axiomatically as the linear Jordan
algebras with product x-y = ;U, 1 satisfying
x-y=y-x, (x*y)x=x*(y-x).
Any associative algebra A gives rise to a Jordan algebra A" via

Uy = xyx, x? = xXx.
A Jordan algebra is special if it is isomorphic to a Jordan subalgebra of some A*.
An important example arises from an associative algebra 4 with an involution * by
considering the hermitian algebra H(A, *) of all *-symmetric elements in A.
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0.2. The free (unital) associative ®-algebra over an infinite set X of variables will
be denoted by Ass(X) and its elements will be called associative polynomials.
Inside Ass(X), the free special (unital) Jordan algebra over X, ie., the Jordan
subalgebra of Ass(X)*' generated by X (and 1), will be denoted by SJ(X) and
its elements will be called Jordan polynomials. An associative or Jordan poly-
nomial p will be written p(yy, ..., y,) if only the variables y, ...,y,eX are
involved in p. In Ass(X) one can consider the so-called standard involution =,
which fixes the elements of X. Jordan polynomials are always symmetric with respect
to =

SJ(X) = H(Ass(X), *) = Ass(X),

where H{Ass(X), *) denotes the set of *-symmetric elements in Ass(X) [4, p. 144].

Notice that Ass(X) and SJ(X) are just the free unital hulls of their corresponding
non-unital analogues, so that imposing the existence of unit elements is not a real
restriction: any map X — J, where J is a not necessarily unital Jordan algebra, can be
extended to a unique (unital) algebra homomorphism SJ(X)} — @1 @ J, where 1@ J
is the free unital hull of J.

0.3. The trace function on Ass(X) is defined by {a}:=a + a* for any element
ae Ass(X). Notice that for Jordan polynomials a, ..., @, (indeed for arbitrary sym-
metric polynomials) the equality

{ay, ...a,} =a, ...a,+ a, ... a

holds. Polynomials of the form {a, ... a,}, where a;, ... ,a,e SJ(X), will be called
n-tads. All n-tads are symmetric polynomials and, if n < 3 they are Jordan poly-
nomials [4, p. 144]. The associative polynomials

ay ... 4y,

a, ...,a,€SJ(X), will be called associative n-tads [4, p. 188].

0.4. We can generate SJ(X) as a ¢-module with Jordan monomials, which are defined
inductively from the variables by Jordan products: the unit and all elements in X are
Jordan monomials and, given Jordan monomials g, b, ¢, the products

U,b, Uso.b (@*>=U,1, a°b=U,,l)

are also Jordan monomials. Unlike 1n the associative case, the set of Jordan
monomials is not a basis of SJ(X) (e.g. 2x* = x>x). A Jordan monomial p is
a homogeneous associative polynomial and so its degree, denoted by deg p, can be
considered.

0.5. Recall that an outer ideal L of a (not necessarily unital) Jordan algebra J is
a submodule of J such that U;L + J° L < L [4,0.13]. In the linear case (3 € ®) outer
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ideals are just ideals. In general, if L is an outer ideal of J then 2L is an ideal of J: for
any xe L,

(2x)? = 4x? = 2(xox)e2L,
U,y =4U,y = 2{xyx} = 2({xyx} — { yxx} + {yxx})

=2((x°y)ex —(x°x)2y + {yxx}) € 2L.

1. n-tad eaters

1.1. A Jordan polynomial p(y,, ..., y,) is called an n-tad eater if

{xl xn~1P(}’1, 7ym)} :q(xb :xn*hyl: 7ym)

for some q(xy, ... ) Xue1s V15 oo s Ym)ESIX), X1, ooo s X1 € X\{¥1s oo, Y} We
can replace variables by arbitrary elements of SJ(X), so that p € SJ(X) is an n-tad
eater if and only if

n—1 factors

— A
(SHX) ... SI(X)p} = SI(X)

[4, 12.1].
1.2. The set of all n-tad eaters is denoted by E,. It is a @-submodule of SJ(X).
Replacing variables by unit elements gives the chain of containments

SIX)=E, =E,=E;2E,2Es2 ... . (1)

The core of E,, 1.e. the biggest ideal of SJ(X) contained in E,, will be denoted by T,.
The ideals T, satisfy

Both E,, T, are invariant under all linearizations and under all homomorphisms of

SI(X) [4, p. 183].

1.3. We recall [4, 12.14] that an n-tad eater eats n-tads no matter where it occurs,

n {actors
Al

N

peE,= {SI(X) ... SI(X)pSI(X) ... SI(X)} < SI(X).

Next, we introduce two associative polynomials which will be important tools in
the sequel. For any x, x4, ..., x,€ X, we define the walking polynomial

WeXyy oo Xp)i= XX o X + (=11 1L x,x.
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If n is even we can also define the running polynomial
Rx(xl, ey X"):z XX ... Xy + (— 1)("/2)-1.\‘ZXIX4X3 vee X2iX2i—1 oo XpXp—1 X,
The next lemma shows the kind of “steps” out of which walking and running is

made.

1.4. Lemma. Let x, x,, ..., x,€X.

(1) Wx(xl, v ,x") = Z:‘:l(— 1)"1)61 ‘e x,»_l{xxi}le oo Xy

.. 2 i

(i) Rylxq, ..., x,) = Z?/:l(— 1y 1x2x1 xzi—zle'—s{xxzw1X2i}x2i+1 e Xy
(n even).

Proof. (1) The equality is clear for n = 1. Let n > 2 and assume that the assertion is
true for n — 1. Now
WX, oo s Xn) = XXq oo X + (= 1" Txq o XX
=(XX] oo Xpoq (= 1" 723x; o X X)X,
F (= DN %y L X (XXt Xq e Xg g XnX)
=Woxy, oo s Xpm)Xn + (= D" Ty Xm g {xX, )

By the induction assumption, the last term equals

n—1
< Y (=) g i XX Xy x,,_1>x,, + (= D" Ixy o xpo g XX, )

i=1

(_ l)i_lxl x,-_l{xxi}le e Xpe

i
o

i=1

(1) Let n = 2m, m > 2. The equality
Re(xXy, ooy X)) = Ry vovs Xpo2)Xno 1 X + (= 1)1 X0 X o Xpm 2 X 34X X0 1 X, )
follows directly from the definition of the running polynomial. Now (i1} follows by
induction on m since the case m = 1 is obvious. [J
1.5. Lemma. If x,, ..., x\, ¥, z€ X, where k is an even positive integer then
Xy oo XgZVZ — X (X3 oo X2V} Z2 — (— D2y yX 1 X . X3X42X52
lies in the linear span in Ass(X) of the elements
X1YXg(2) - xa(i—1){Zxa'(i)xa'(i-+-l)}xzr(i+2) v Xg )2,

where ¢ is a permutation of {2, ..., k}.

Proof. Recall that, by definition of the running polynomial, we have

(kj2)—2

X1 ¥R (X, .., X3)x2z = x y[zxexe—1 ... X3+ (1) Xp—1 Xk ---X3X4Z]X;2.
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and then

X{ oo XRZVZ = X({X5 ... XaZP}Z — X\ YZXk ... XzZ

=x{x; ... Xpzyjz — X YR (X4, ..., X3)X22
+ (— l)k/leyxkﬂxk e X3XgZX322Z.
Now the result follows from (1.4) (ii) since x; yR.(xy, ..., x3}x,zIsin the linear span of
the elements
f
X1YXg(2) -+ xa(i—l)lzxa(i)xa(i+1)}xa(i+2) v Xo(k) 2,

where ¢ is a permutation of {2, ... . k}. [

We will use the previous result in the next theorem which extends to an arbitrary
odd n [4, 12.5 (i1)].

1.6. Theorem. Let n be an odd positive integer.
() E, is an outer ideal of SI(X) and 2E, < T,.
(i) If 1€ ® then E, = T,.

Proof. (i) We know from (1.2) that E; = T,. We will show that E, ,  is an outer ideal
of SJ(X) for every even k. Let pe Ey 1 1, ay, ..., ay, be SI(X). By taking traces in (1.5),
using pe E; 1 and (1.3) we obtain

{al akbpb} - {a1{a2 akbp}b} - (— l)"/z{alpak_lak a3a4bazb}€SJ(X).
Moreover,

{ai{ay ... aybp}b} + {a;pay_ay ... azasba, b}

= {al{az akbp}b} i {alpak_lak a3a4(Uba2)}

k+ 1 factors

(———/;—ﬁ
e {SIX)SIX)SHX)} £ {SI(X)pSI(X) ... SI(X)} = SI(X)

by (1.3) since pe E, ., and we have shown U,p = bpbe E, ;. This proves that E, is an
outer ideal of SJ(X) since SI(X ) is unital. Now 2E, < T, since 2E, is an ideal of SJ(X)
by (0.5).

(ii) Follows clearly from (1). [

Some reverse inclusions of (1.2) are given in [4, 12.5] while in the linear case the
equalities T, = Ts = T¢ = T are part of the Jordan folklore. Our next results are
aimed at strengthening and unifying the previous assertions.

1.7. Lemma. For any integer n > 2, xy, ..., X,€ X,

n
Y (=D i WXy e X ) = Xy Xy — (= 1),
i=2
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Proof. We will carry out an induction on n. For n =2 our assertion is just the
definition of the walking polynomial W, (x;) = x,x; + x;x,. Let us assume the
equality for some n > 2. Now

n+1

Z (— 1)(i~1)(i+2)/2xn+1 v Xiprt Wielxq, ooy xi0q)
i=2

n
:xn+1< Z (—‘ 1)(1_1)(l+2)/2xn xi+1Wx‘(x19 sxivl))
i=2

+ (= DTV (xy, e, X)
=X 1 (X o Xy = (= DFOT DX ) + (= DT x L xy L x,
+(—=1"'x; ... x,41) (by the induction assumption)
= Xpp1Xn oo Xg A+ (= D)OEI2ZEo Ay x,y o (since in(n + 3)
—3n—-Dn=4n* +3n — (n® —n)) = 2n)
= Xpaq Xy F (= DI
= Xyaq1 - Xg — (= DTF2x 0 x,0, (since 2(n? + 5n —2)
—im* 4+ =%@n—-2)=2n-1) O
Given an associative n-tad a; ... a,, for a, ..., a, € SJ(X), the polynomial
g1y --- {aa(i)aa(i+1)} <o Qg
obtained by a permutation ¢ of the indexes and a Jordan product a,q e azi+ 1y =

{ag)aei+ 1)} Will be called a reduction of a; ... a,.

1.8. Proposition. Let n be a positive integet, x,, ..., x, € X.

(@) If n=4k or n=4k + 1 for some integer k, then 2x, ... x, — {x; ... x,} is
a linear combination with coefficients 4 1 of reductions of x, ... x,.

(i) If n=4k +2 or n =4k + 3 for some integer k, then {x, ... x,} is a linear
combination with coefficients + 1 of reductions of xy ... x,.

Proof. Notice that n =4k or n=4k + 1 if and only if (— 1)~V =1 and
n =4k + 2orn =4k + 3ifand only if (— 1)}/2"" D" = — [, Now, apply (1.7) and (1.4)
. O

1.9. Theorem. Let k be a positive integer. Then
(1) 2Tax S Eax+15 2Tax+1 S Egpr2 and 2Tyg12 S Egp v 3.
(i) If 3€ @ then Tay = Tax+1= Taxs2 = Tass.

Proof. (i) If n = 4k or n = 4k + 1 then

2X0Xp oor Xp — Xo{Xy oo Xp} = Xo(2Xy . Xp— {X) ool X))
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is a linear combination of reductions of x, ... x, by (L.8) (i). Putting pe T, instead of
X,, evaluating x; — a,€SJ(X) (i =0, ..., n — 1) and taking traces yields by (0.3) that
{ag ... a,—12p}is{ag{a; ... a,—1p}} plus a linear combination of traces of reductions
ofay ... a,-, p, which are Jordan polynomials since pe T, and hence {a;p} € T, for any
a;. Thus 2pekE, .

If n = 4k + 2 then {x; ... x,+} is a linear combination of reduction of x; ... x, .
Thus any evaluation x; — a; € SI(X)i=1, ..., n), x,4+1 — p € T, is a linear combi-
nation of reductions of a, ... a,p. By (0.3), taking traces gives that

{ay ... a.2p} = 2{a, ... a,p} = {{a, ... a,p}}

is a linear combination of traces of reductions of ay ... a,p, which are Jordan
polynomials since pe T, implies {a;p} e T, as above.

(ii) Recall that T, is an ideal of SJ(X), which is contained in E4; . by (i) if € &.
Hence T, € Typyq. Similarly, Tapi1 S Tagr2 S Tag-3. But Tyy3 € Ty by (1.2)
2. O

1.10. Corollary. If 1€ ®, then
(1) Tax = Takr1 = Tax+2 = Tax+3 = Esxr1 = Esgr2 = Es+3 for any positive inte-
ger k. Notice the equalities in the chains given in (1.2)

S Ty = Tage1 = Tugsr = Tya3 S

Ul I I |

S Ey € Ejpvr = Eskvz = Enpss &

() E,,, €T, for any positive integer n.

Proof. (i) follows from (1.9) and (1.6). Indeed, E4i 3 S Esx12 S Ear 1 by (1.2)(1), but
Egv1 = Tax+1, Eakvz = Taxss by (16)(11), and Tyr = Tagr1 = Tarv2 = Tar+3 by
(1.9) (i1).

(i) The cases n = 4k, 4k + 1, 4k + 2 follow from (1). If n = 4k + 3 then E, = T, by
(1.6) and E, ., < E, by (12)(1). O

1.11. Remarks. (i) A result analogous to Lemma 1.7 can be obtained for the running

polynomial: For any positive integer m, x, ... , Xam+1 € X,
m
i—1
Z (= 1y R, (%25, X200 10 coo s Xome 1)X2i-2X2i23 ... XX
i=1
m—1
+ (_ 1 Z x21+1Rx2,(x2_)+3: x21+27x21+59x21+4, >x2m+1,x2m)

j=1
xej—IXZjHZ e XX

— m—1

= X1 -+ Xom+1 +(_ 1) Xom+1 +-+ X1+

If we call a 2-reduction of a given associative n-tad a, ... a,(n >3, a4, ..., a, in
SJ(X)) the polynomial Gy, ... {Gsi)doi+1)daG+2)} --- Gawm Obtained from a permutation
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o of the indexes and a ternary Jordan product {a, s+ 1) ds¢ + 2) }» then the following
partial improvement of Proposition 1.8 can be obtained from the above formula:

() If n =4k + 1 for some integer k, then 2x, ... x, — {x; ... x,} is a linear combi-
nation with coefficients + 1 of 2-reductions of x, ... x,.

(ii") If n =4k + 3 for some integer k, then {x, ... x,} is a linear combination with
coefficients + 1 of 2-reductions of x; ... x,.

(i) In the proof of (1.9)(i), the case n = 4k + 2 can also be proved by applying
(1.8)(i) (or even the above (i')) to 2x; ... x, — {X; ... X,} and multiplying by x¢x;.
which yields that 2xg ... x, — xox;{x; ... x,} Is a linear combination of reductions of
Xo ... X, and then proceed as in the case n = 4k or n =4k + 1.

(ii) Neither (1.8)(i), (ii) nor its partial improvements (i), (i) can be used to obtain an
analogue of (1.9)(i) for n = 4k + 3.

2. Imbedded n-tad eaters

2.1. A Jordan polynomial p(yy, ..., ym)€SHX), y1, ..., ym€ X is called an imbedded
n-tad eater if
k . . .
{2y oo 5pXy oo Xy qptty oty = Y, {zy ... Z,pipipSU; ... Us),
i=1
where pi(xy, .., Xp—1, V15 - » ym)€SI(X), for arbitrary positive integers r, s and
Zhs vens Zpy Xqp ove s X1 Upy o, Us€ X,

2.2. A Jordan polynomial p(yy, ..., ¥m)€SIX), ¥, ..., ym€ X is called an asso-
ciative n-tad eater if

k
Xy oo XgmyP = ), P1P3P3,
i=1
where pi(xy, -, Xuo15 V1, - » Ym)€SI(X) for arbitrary x,, ..., x,-;€X. By using
the universal property of Ass(X), a Jordan polynomial p(y4, ..., y,,) is an associative
n-tad eater if
n factors
f_—__k__ﬁ
SJ(X) ... SI{X)p < SIX)SI{X)SI(X).

The next result shows that the notions defined in (2.1) and (2.2) coincide.

2.3. Proposition. A Jordan polynomial p(yy, ..., ym)€SI(X), yy, ..., yweX is an
associative n-tad eater if and only if it is an imbedded n-tad eater.

Proof. It is clear from the definition that associative n-tad eaters are imbedded n-
tad eaters. We will show the converse. Let a,b, xy, ..., X, 1 €X\{ V1> «+-» Ym}s
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a#b,a b¢{x,, ..., x,_,} and assume that p(y,, ..., y,) is an imbedded n-tad eater.

Hence
k

{axy ... x,1pb} = 3 {apipipsb},
i=1
where pi(Xy, ..., Xy—15 V1, - » Ym) €SI(X). Comparing in the previous equality the
associative monomials beginning with a yields
k

axq{ ... X, 1pb = Z api pspib.

i=1

Thus x, ... X,1p = Y.1-, Pipiph and p is an associative n-tad eater. []

2.4. The set of imbedded n-tad eaters is a submodule of SJ(X), denoted by IE,, whose
core will be denoted by I,. As for n-tad eaters the following chains of containments
hold

SIX)=IE, =1E,=1E;21E,21E;2 ..., (1)

SIXy=I,=L=1L=20L=21;=2 ... (2)
We also have the obvious relation between n-tad eaters and imbedded n-tad eaters

IE, < E, I,eT, (3)
for all n (cf. [4, 13.1, 13.2]).

2.5. It is not known whether an element pe IE, cats imbedded n-tads (equivalently,
with a proof like the one in (2.3), associative n-tads) from any position. But this is true
if pel,:

n factors

A
o N

SIHX) ... SHX)pSK(X) ... SJ(X) = SJ(X)SI(X)SI(X). (1)

We remark that the above property holds for any p lying in an outer ideal B of
SJ(X) contained in IE, (cf. [4, 12.14]): If

ay ... a,payy, ... a,eSI(X)SI(X)SI(X)
for any ay, ..., a,, a4+, ..., a,eSJ(X) and any pe B, then
ay ... Q1 PayQysy ... Gy =10y ... G (@,°P)Asy ... Ay — Ay ... QPAvy o ... 4y
=la;. - a-1(@,°oP)arss ... Gy — a1 ... QPG so ... a4, €ST(X)SIX)SI(X)

since a,°pe B.
Anyway, for an arbitrary pe IE,, p eats associative n-tads from positions’ numbers
1,2,3n—2,n—1and n:

Qy ... 1P, Qy ... Ay 3P0y 1,0A; ... Ay 3PAn—30,—; € SI(X)SI(X)SI(X), (2)
DAy .. Guo1, Q1 PAy ... Qu_y, d1A3PAy ... 4,1 €SI(X)SI(X)SI(X), 3)
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for any a,, ..., a,-, € SJ(X). Indeed a, ... a,_,peSI(X)SI(X)SI(X) by (2.3). Now
A) oo lp— 2Py =1{d1 ... Q- 3P}dy-1 —{Pdy-2 ...d1 U 1} + A1y ...4y_,PE
SIX)SI(X) + SIX) + SIX)SIX)SIX) < SI(X)SI(X)SI(X)
by (1.3) since pelE,<E,<E,_,. Similarly, ay ... a,_3pa,-;a,-; lies in

SI(X)SI{X)SJ(X), and (3) follows from (2) by applying the standard involution.
In the next result we study the converse of (2.4)(3).

2.6. Theorem. Let n > 3 be a positive integer.
(i) 2" 3E,c IE,, 2" 3T, < I,.
(i) If s€® then E, = IE,, T, =1,.

Proof. (i) By (1.2) and (2.4) the result is clear for n = 3. Now we will carry out an
induction on n. Let n>4 and assume (i) for indexes less than n. Let
ayy ... ,d,—1€SJ(X), peE,. Assume first n = 4k or n = 4k + 1 for some integer k. By
(1.8)(i)

dy ... Gy—12" *p—lay ... a,_12""*p}

is a linear combination of reductions of a, ... a, 2"~ *p. Any such reduction is an
associative (n — 1)-tad containing either 2"~*p or {a;2" *p} =2""*{a;p}. If n = 4k
then, by (1.6) and the induction assumption, 2"~ *E, _, is an outer ideal contained in
IE,_y,and 2" *p, {a;2" *p}e2""*E, ;. If n = 4k + 1 then 2"~ *E, is an outer ideal
by (1.6),2" " *p, {a;2" " *p}e2""*E,and 2" *E, < 2" *E,., < IE,_, by the induction
assumption. By the remark following (2.5)(1), 2"~ *p, {a;2"~*p} eat associative (n — 1)-
tads from any position and the above-mentioned reductions lie in SJ(X)SJ(X)SJ(X).
Now, the n-tad {a; ... a,-,2""*p} lies in SJ(X)SJ(X)SJ(X) since 2" “*pe E,, hence

a ... a,- 12" 3peSIX)SI(X)SIX),

showing 2" *pelE, (by (2.3)).
The cases n = 4k + 2 and n = 4k + 3 follow analogously by applying (1.8)(i) to

ay ... a,—12" *p—Alay ...a,-,2" " *p}
to show that
ay ... a, 12" *p —ayaz{as ... a,_ 12" *p}
is a linear combination of reductions of a, ... a,_ 2" *p, and noticing that
ajaz{as ... a,— 12" *p}eSHX)SIX)SI(X)
since {as ... a,—12" " *p}eSI(X) by 2" *peE, < E,_,.
(1) Is straightforward. [

The analogue of (1.6) is even stronger for imbedded n-tad eaters.
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2.7. Theorem. For any positive integer n # 4, IE, is an inner ideal of SJ(X'). Moreover,
if nis odd then IE, is an ideal of SI(X), i.e, [E, =1I,.

Proof. We will show that IE, is an inner ideal if n # 4. The result is known for n = 1,
2, 3 (see (2.4)), so we will assume n > 5. Let pelE,, ay, ..., a,_1, beSJ(X). Now

ay ... a,- php = (a,as ... a,-p)bpe SHX)SI(X)SI(X)bp = SI(X)SI(X)SI(X)

since pelE, < IE5 and we have shown U,b = pbpelE,.

The proof of (1.6)(i) without taking traces applies here with obvious changes to
show that IE, is an outer ideal when n is odd. We know from (2.4) that /E, =I,. We
will show that for any even k, IE,, is an outer ideal of SJ(X). Let pelE,,,,
a, ..., a., beSJ(X). By (1.5), using pe IE, . and (2.5)(3), we obtain

a ... aghpb — ay{ay ... aybplb — (— 1Y% aypa,_qay ... azasbab
e SI(X)SI(X)SI(X).
Moreover
ajfay ... aybpih + aypay_ay ... asasbasbh

=ay{a, ... axbp}b t aipa; _ ay ... aza,(Usay)

k+ 1 factors

Al
4 Al

e SI(X)SI(X)SI(X) + SI(X)pSI(X) ... STI(X) = SI(X)SI(X)SI(X)

by (2.5)(3)and pe IE;, ; € Ei+ . So we have shown U,p = bpbe IE, .. This finishes
the proof since SJ(X) is unital. []

The proofs of (1.9) and (1.10) without taking traces also apply for imbedded n-tad
eaters, so that one readily obtains.

2.8. Theorem. Let k, n be positive integers. Then

(1) 2Jax S TEqi+1, 2 ak+1 S 1Eg 2 and 2l a2 S 1Egyr 3.

(i) If % € ® then Iy = lawsr = lans2 = laks3s = IEg o1 = [Eg4 2 = [Eg 43 and
1En+1 = In’

Note that (ii) also follows from (1.10) and (2.6) directly.

3. Hearty eaters

3.1. A (unital) adic family on the free special Jordan algebra SJ(X) is a family of
n-linear maps F,:SJ(X)" — V into some $-module V for all n > 1 having the unital

Jordan-alternating properties
(Al) Fo( ..., 1, ... )=F,_1(..., ...)
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(AID) F,(...,a,a, ...)=F,_((...,a% ...) (it is a consequence of (AI) and (AIII))

(AIID) F,(...,a,b,a, ...)=F,_o(---,Ub, ...)
(and therefore by linearization also)

(AIl'Y Fo(....ay. a5, ... )+ F ... ,az,aq, ...)=F,-1(... . {aya;}, ...)

(AIIT') F,(...,a1, 42,03, ...) + Fo( ..., a3, az,ay, ...)=F,_5(....{a,azas}, ...).

In [4, p. 188], McCrimmon and Zelmanov give two more conditions called (A1V)
and (AV) on compatibility of the maps F, with tetrads and pentads. Our definition is
just apparently more general. Indeed we will show below (see (3.7)) that, for adic
families on SJ(X), (AIV) and (AV) are consequences of the previous axioms
(AD-(AIII).

3.2. The families of n-tads, imbedded n-tads and associative n-tads are clearly exam-
ples of the adic families on SJ(X) where V' = Ass(X).

3.3. If # i1s a collection of adic families on SJ(X), we say that p(y, ..., yu}eSHX)
(y1s - s yme X) eats F-n-tads if

k
Fo(x1, -y Xam1,0) = ), F3(p1, p3, p3)€ F5(ST(X), ST(X), ST(X))
i=1

for some pi(Xy, <oy Xy— 15 Vis oo s Ym) €SHX), X5 ooy Xue 1 €X\{V1,s -o. ) Y ), fOr any
{F.},>1€%. When # consists of all possible adic families we will cail such
a p a hearty n-tad eater. The set #'E, of all hearty n-tad eaters is a submodule of SJ(X)
whose core will be denoted by #,. Again, these are linearization-invariant ideals
invariant under all endomorphisms and derivations of SJ(X) [4, p. 189].

Our aim is to show that all adic families can be reduced in a certain sense to the
adic family of associative n-tads so that hearty n-tad eaters are just imbedded n-tad
eaters.

34. Let F = {F,},>, be an adic family on SJ(X) into V. We define a product in the
direct sum of $-modules Ass(X) @ V by

(X1 s Xyt U)()H v Vm t W):xl < Xp Yot oees ym+Fn+m(x11 s Xps Vi -es 9ym)

(T+ux; ...ox, +0)=(x; ... x, + oMl +u) =x( ... x, + Folxy, ..., Xu) (2)

for any xq, ..., X, Vi, .-, ym€ X, extended to Ass(X)@ V by bilinearity. It is
straightforward that the algebra obtained is associative. Let

@r:Ass(X) - Ass(X)@ V
be the algebra homomorphism extending the map

X —)ASS(X)@ I/7 X; = X + Fx(xi).
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It is clear that ¢y is injective, so that the image @r(Ass(X)), denoted by Assp(X), 1s
a subalgebra of the one defined by (1) and (2), isomorphic to Ass(X). Namely, the
algebra isomorphism

Pp:Ass(X) — Assp(X)
is given by
1— 1+ F(1)
X ooee Xy b Xq o X+ Fo(xq, oo, X))

for any x4, ..., x,eX.

3.5. Lemma. Under the conditions of (3.4)

@r(p1 oo pu) =Pp1 o Pn+ Fulp1, ..o Pa) € Assp(X)
for any py, ..., ppe SI(X).
Proof. By multilinearity of the product in Ass(X) and F, we can assume that
Pi. - » Pn are Jordan monomials (see (0.4)) different from 1. We proceed by induction
onm = () {-;degp;) — n. If m = 0 then p,, ..., p,€ X and the result follows from the

definition of @p. Let m > 1. Then there exists je {1, ..., n} such that degp; > 2. We
must consider four different cases:

pj=a’ a°b, Ub, U, e,
where a, b, ¢ are Jordan monomials and dega, degh, degc < degp;. If p; = a” then
ProPot FPis oo s P =D1 o Dot @it - Pt FDl o Pim 1 @Dt -1 D)
=Py o Pjm1dapjay o po+ Fosa(prs i pj1, @4, pjes, - pa) (by (AlD)

= QDF(IH pn)EASSF(X)

by the induction assumption. The cases p; = a- b, U,b, U, pc also follow from the
induction assumption after applying (AIl"), (AITl) and (AILl'), respectively. []

3.6. Theorem. For any integer n > 1

IE, = #E, and I,= ,.

Proof. From (3.2), #'E, < IE, and #,< I, Thus, let p(yq, ..., ym)eSIHX)
(y1+ -+ » ym€ X ) be an imbedded n-tad eater. By (2.3) p eats associative n-tads, so that

k
X Xeap =Y qidhgh, (1
i=1
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where ¢4(X1, «oo s Xn— 15 V1s <o s Ym) € STX), X1, oo, Xam 1 €X\{ V14 oo, Ym). Now, for
any adic family F the isomorphism ¢ applied to (1) yields

k k
Xi e Xpo P+ FalXps o Xam p) = ) 414245 + ), Falgh. g2, 45)
using (3.5). Hence,

k
F,,(X], ~xn—1ap) = Z F3(q,17 qIZ’ qlS)

i=1

and p eats F — n-tads. We have shown IE, < #°E,, from which [, < #, isclear. [

3.7. Remarks. (i) Axioms (AIV)and (AV)of [4, 13.6] follow from (3.1) (A)—(AIII). If
{F,}, > 1s an adic family on SJ(X) in the sense of (3.1) and ay, ..., a, € SJ(X) satisfy
la; ... @} € SY(X) then

Fo(oonay, ooy tiy )+ Fol ooy ovaqy ) =Fo_pon(o{ay coawds )

(1)
using (3.5) when ¢ is applied to the equality
oy e Oy et @y = Ay g
in Ass(X).

(i) It is not true that for adic families on arbitrary special Jordan algebras the
axioms (AIV) and (AV) on compatibility with tetrads and pentads are automatic. For
example, let J and J' be special Jordan algebras, A and A’ associative *-envelopes of
J and J', respectively, and f:J — J a Jordan homomorphism. We can consider the
family {F,:SJ(X)" — A'}, ., of n-linear maps defined by

Fo(xi, o Xa) =1 0x1) o f(x0)

which have the Jordan-alternating properties

(Al) F,(...,1, ...})=F,_,(..., ...) (when J and J' are unital and f is unit-
preserving),

(AID F(....x, % ...)=F,_1(...,x* ...),

(AL F,(....x,v,x, ...)=F,_5(..., Uy, ...).
But {F,},. is compatible with tetrads

(ATIV) Fo( ..., Xy, X9, X3, Xay oo V+ Fol ooy Xay X3, X2, Xq, oo ) =F,_5( ...,
{X1X,X3 X4}, ... ) Whenever {x;x,x3x,}€J,
if and only if f preserves tetrads

fUxix2X3%4)) = {(f(x1)f(x2)f(x3)f(xs)} whenever {x1x2x3x4} €.

Since examples of Jordan homomorphisms not preserving tetrads are known [3,
Example in p. 459, Remark 1.7], the existence of families {F, }, -, not compatible with
tetrads and satisfying the Jordan-alternating properties (3.1) follows.
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(iii) However, there exists a large class of special Jordan algebras in which every
family satisfying the Jordan-alternating properties is compatible with tetrads and
pentads. Following [3] a special Jordan algebra J is a Z'-algebra if J equals Z'(J) the
ideal generated by all values Z,g(ay, ..., a12) for a;eJ, where Z,5 is a precise
ZeI'manov polynomial given in [4, pp. 192, 195] (see also [ 1, p. 182]). More generally,
let J satisfy

J = Es(J) (1)

(in particular, any % -algebra satisfies the above equality since 2 < Es [4, 14.2]), A be
a x-envelope for J, and {F,},-, be a family of n-linear maps on J into a ®-module
V satisfying the Jordan-alternating properties (3.1). We note that for any map f from
X into J, an adic family {F{},., on SJ(X) can be obtained by

Fr{(pls apn) = Fn(f(pl)’ 5f(pn))>

for p;e SI(X), where fis the unique algebra homomorphism extension of f to SJ(X).

Now, fix a,, ..., a, by, by, b3,bs,dy, ...,d;in J for some n =k + 4 + 1. By (1),
there exists p(zy, ..., z,,) in the submodule Es of SJ(X), and ¢,, ..., c,€J, such that
bs = plcy, ..., ¢n). We choose pairwise different xi, ..., Xp, Vi, V2, V35 215 oov > Zims
t1, ..., ,€X and consider the map f: X —J sending x; —a; (i=1, ... , k), y;— b;
(i=1, 2, 3), zi—¢ (i=1....m), t;—d; (i=1,...,1) and ur—0 for all
UEX\{X1, coo s Xbs V12 V2, V35 210 oo s Zms L1s -oo 5 ). SO, we have

Flay, ...,ae, by, by, by, ba,dy, ... dy) + Flay, ..., ax, ba, ba, by, by, dy, .., d)
= Fo(T0er)s oo s S0 F s F 2k F(ra) Fplzas s za)) (1), s (1))
+ Fo(Feer) o FGa) J(pzas oo 2 S (03) T (02), F (i) (1), -5 T (@)
= FI(X1. ooy X Vi Y20 V3o P(Z1s coos Zmh Ery ooas 1)
+ FI(X, oo X P(Z4s ooes Zmds V3s V2o Vis bis ooes 1)
= F) 3(X1, ooy Xis AV1V2V3P(Z15 vy Zm) s Eys wvns 17)

({F}} is an adic family on SJ(X), hence it is compatible with tetrads, and
the element {y,y,y3p(z1, ..., zn)} €SI(X) by (1))

= Foa(F0en), oo FO0 TG yayayaplzes ooz} f(tn), -, F())
=F,_3(ay, ..., a,, {b1byb3b,}, dy, ..., dy),
where for the last equality we use the fact that if
iv2yspzr, oo zm)} = 4V ¥2. 93, 2 s Zm) €SI(X)
then
JUp1y2yap(ar, oo 2m)}) =@ y2. ¥30 21, o 2))
= q(f () f(2) S 3) f (1), ooy f(zm))
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= q(bbea b3,C1, ~-~»Cm)
= {blbzbg,p(cl, ...,Cm)} = {b1b2b3b4}€.].

Analogously, it is proved that { F,} is compatible with pentads.
(iv) The construction of Assp(X) provides a way to obtain any adic family {F, },.
in SJ(X) from the adic family {4, }, ., consisting of the associative n-tads

A SIHX) — Ass(X), Agay, ..., a,) =aq ... Q.
Indeed, the maps F,, n > 1, are given by the compositions
Fn = TEVO(pFoAna

where 1y denotes the canonical projection on V of Assp(X) € Ass{X)@® V.

3.8. Hearty Eaters for Jordan Triple Systems. The construction of the algebra
Assp(X) given in (3.4) obviously can be generalized to triple systems so that one can
show (formally with the same proofs) that hearty eaters in triples [1] are exactly the
polynomials in the free special Jordan triple systems which eat associative n-tads (of
odd length!). As in (3.7)(i), for an adic family on the free Jordan triple system JTS(X)
condition (T2) in [1, 3.7] is a consequence of (T1).
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