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Abstract 

In this paper we study the relationship of several ideals of the free special Jordan algebra. In 
particular, we show that the ideal of hearty n-tad eaters coincides with that of imbedded n-tad 
eaters over an arbitrary ring of scalars. In the linear case, we show that they coincide with the 
ideal of n-tad eaters. The distance between the different eater submodules and their cores is also 
studied. 6 1998 Elsevier Science B.V. 

1991 Math. Subj. Class.: 17CO5; 17C99 

0. Introduction 

The ideals of n-tad eaters play a central role in the description of strongly prime 

linear Jordan algebras [6]. The extension of [6] to quadratic algebras [4] requires 

a combinatorial extra-effort in the form of new ideals of polynomials, namely, the 

so-called imbedded n-tad eaters and hearty eaters. A nonzero hermitian ideal of the 

free special Jordan algebra is obtained by McCrimmon and Zelmanov in [4] with the 

set of hearty pentad eaters, and several relations between the different sets of poly- 

nomials are established. D’Amour gives analogues of hearty eaters for Jordan triple 

systems in [l] and uses them in the study of strongly prime Jordan triple systems [2]. 

Our aim is to further investigate the relationship between n-tad eaters, imbedded 

n-tad eaters and hearty n-tad eaters, as well as to study the distance between the 

submodules consisting of these polynomials and the biggest ideals (the cores) con- 

tained in them. With purely combinatorial techniques some equalities relating asso- 

ciative and usual n-tads are given in Section 1. This allows us to show that the set E, of 

n-tad eaters is always an outer ideal when n is odd (1.6) and to study in (1.9) the 
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distance between consecutive E,, E, + , and their cores, extending some of the results 

of [4]. In Section 2, imbedded n-tad eaters are studied with the help of the combina- 

torial lemmas of the previous section. Namely, it is proved that the set of imbedded 

n-tad eaters IE, is always an ideal when II is odd (2.7), as well as an analogue (2.8) of 

(1.9). To simplify the argument we first show that imbedded n-tad eaters are exactly 

those polynomials which eat associative n-tads (2.3) a fact which is also used to study 

the connection between E, and IE,. Precedents of these results which have inspired 

a part of this work can be found in [S, pp. 69-701. In Section 3, the equality between 

imbedded n-tad eaters and hearty n-tad eaters is established (3.6). Given an arbitrary 

adic family F on the free special Jordan algebra, a realization of the free associative 

algebra can be built (3.4) so that calculations with F can be reduced to associative 

n-tads. The use of this model also justifies the simplified definition of adic family on 

the free special Jordan algebra given in (3.1). 

0.1. Preliminaries 

Throughout this paper we will deal with an arbitrary ring of scalars @. Unless 

explicitly said, the existence of 4~ C? is not assumed. Our main reference for basic 

results and terminology will be [4]. To make the text as self-contained as possible, we 

will recall some basic facts. 

0.1. A unital Jordan algebra over @ consists of a Q-module J, a distinguished element 

1 E J, and a quadratic map U : J + End@(J) such that 

7Ji = Id, UXVV,. = V.,,Ux = U”,L..x’ UQ = UxU,Ux 

hold in all scalar extensions, where 

yr,,z = {xyz} = u,.,y (U,., = ux+z - ux - Uz). 

A Jordan algebra is just a subspace J = (J, U,( )‘) of some unital Jordan algebra 

closed under the products U,y and the square 

x2=u1 x . 

If 3~ ~0 we can characterize these algebras axiomatically as the linear Jordan 

algebras with product x. y = iU,,,l satisfying 

x.y= y.x, (xZ.y).x = xZ.(y.x). 

Any associative algebra A gives rise to a Jordan algebra A+ via 

UX/,y := xyx, x2 = X.X. 

A Jordan algebra is special if it is isomorphic to a Jordan subalgebra of some A’. 

An important example arises from an associative algebra A with an involution * by 

considering the hermitian algebra H(A, *) of all *-symmetric elements in A. 
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0.2. The free (unital) associative @-algebra over an infinite set X of variables will 

be denoted by Ass(X) and its elements will be called associutive polynomials. 

Inside Ass(X), the free special (unital) Jordan algebra over X, i.e., the Jordan 

subalgebra of Ass(X)‘+’ generated by X (and l), will be denoted by SJ(X) and 

its elements will be called Jordan polynomials. An associative or Jordan poly- 

nomial p will be written p(y,, . . . , y,,,) if only the variables y,, . . , ymeX are 

involved in p. In Ass(X) one can consider the so-called standard involution *, 

which fixes the elements of X. Jordan polynomials are always symmetric with respect 

to *: 

SJ(X) c H(Ass(X), * ) E Ass(X), 

where H(Ass(X), *) denotes the set of *-symmetric elements in Ass(X) [4, p. 1443. 

Notice that Ass(X) and SJ(X) are just the free unital hulls of their corresponding 

non-unital analogues, so that imposing the existence of unit elements is not a real 

restriction: any map X + J, where J is a not necessarily unital Jordan algebra, can be 

extended to a unique (unital) algebra homomorphism SJ(X) -+ @l 0 J, where @l @ J 
is the free unital hull of J. 

0.3. The truce function on Ass(X) is defined by (a} := a + a* for any element 

aE Ass(X). Notice that for Jordan polynomials ai, . . , a, (indeed for arbitrary sym- 

metric polynomials) the equality 

{a, . . . a,) = a, . . . a, + a, . . . a, 

holds. Polynomials of the form {ai . a,}, where al, . ,a,,~ SJ(X), will be called 

n-tads. All n-tads are symmetric polynomials and, if n I 3 they are Jordan poly- 

nomials [4, p. 1441. The associative polynomials 

al . . . a,, 

at, .” 9 a,, E SJ(X), will be called associative n-tads [4, p. 1881 

0.4. We can generate SJ(X) as a Q-module with Jordan monomials, which are defined 

inductively from the variables by Jordan products: the unit and all elements in X are 

Jordan monomials and, given Jordan monomials a, h, c, the products 

IJ,h, U,,,b (a2 = U,l, uob = U,,,l) 

are also Jordan monomials. Unlike in the associative case, the set of Jordan 

monomials is not a basis of SJ(X) (e.g. 2 x2 = x J x). A Jordan monomial p is 

a homogeneous associative polynomial and so its degree, denoted by deg p, can be 

considered. 

0.5. Recall that an outer ideal L of a (not necessarily unital) Jordan algebra J is 

a submodule of J such that U,L + J 0 L c L [4,0.13]. In the linear case (4 E @) outer 
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ideals are just ideals. In general, if L is an outer ideal of J then 2L is an ideal of J: for 

any xeL, 

(2x)’ = 4x2 = 2(x 0 x) E 2L, 

uzxy = 4u,y = 2(xyx} = 2({xyx} - (yxxj + {yxx>) 

= 2((xoy) 0 x - (x 0 x) 3 y + (yxx}) E 2L. 

1. n-tad eaters 

1.1. A Jordan polynomial p( y, , . , y,,,) is called an n-tad eater if 

(x1 “. &-lP(YI, .‘. ,Ym)) =qh, .” >XPl>Yl, ... ,Y”J 

for some 4(x1, . . . ,x,_~, y,, . . . , ~,)ESJ(X), x1, . . . ,x,_~ E X\{yl, . . . , y,}. We 

can replace variables by arbitrary elements of SJ(X), so that p E SJ(X) is an n-tad 

eater if and only if 

n- 1 factors 
n I \ 

:SJ(X) . . . SJ(X)p} G SJ(X) 

[4, 12.11. 

1.2. The set of all n-tad eaters is denoted by E,. It is a @-submodule of SJ(X). 

Replacing variables by unit elements gives the chain of containments 

SJ(X)=E, =E,=E,~E,~E,~ . . . . (1) 

The core of E,, i.e. the biggest ideal of SJ(X) contained in E,, will be denoted by T,,. 

The ideals T,, satisfy 

SJ(X)=T,=T,=T,~T,~T,~ . . . (2) 

Both E,, T,, are invariant under all linearizations and under all homomorphisms of 

SJ(X) [4, p. 1831. 

1.3. We recall [4, 12.141 that an n-tad eater eats n-tads no matter where it occurs, 

PEE, * {SJ(X) . . . SJ(X)pSJ(X) . . . SJ(X)} E SJ(X). 

Next, we introduce two associative polynomials which will be important tools in 

the sequel. For any x, x1, . . . , x,,EX, we define the walking polynomial 

W&I, . . . ) x,):= XXI . . . x, + (- 1)“- lx1 . . . x,x. 
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If n is even we can also define the running polynomial 

RJXl, . . . ,X,)1= XX1 . Xpj +(- l)(““‘-‘X2X1XqXj ... X2iX2i-1 ... X,X,-1X. 

The next lemma shows the kind of “steps” out of which walking and running is 

made. 

1.4. Lemma. Let x,x1, . . . , x,EX. 

(9 wAxI, . . . ,Xn)=C1=1(- l)‘-*Xl ... Xi_1{XXi}Yi+l ... X,. 

(ii) R,(xr, . . . ,X,) = Cy!f,(- l)“XzXl . . . XZi-2X2i-3{XX2i_1XZi}X2i+l ... X, 

(n even). 

Proof. (i) The equality is clear for n = 1. Let n 2 2 and assume that the assertion is 
true for n - 1. Now 

WX(Xl> ... 9 x,) = xx1 . . . x, + (- l)“_‘xl . . . x,x 

= (XXI . . . x,-r + (- 1)“-2x1 . . . x,-1x)x, 

+ (- 1)“-‘(x1 . . . x,_rxx, + x1 . . . x,-*x,x) 

= WJxr, . . . ,x,-1)x, + (- l)“_‘xr . x,_l{xx,}. 

By the induction assumption, the last term equals 

( 

n-1 

ill (- l)‘-‘Xl ... Xi_1{XXi)Xi+l ... X,-l 

> 

X, +(- l)“-‘Xl . . . X,-1 

= i$l (- l)i- ‘X1 . . Xi_1{XXi)Xi+l X,. 

(ii) Let H = 2m, m 2 2. The equality 

{ XXII 

K(x1, . . . > x,) = Ux, ) . ..) X,_2)X,_lX, + (-l)“_‘x,x1 ...x,_2x,_3{xx,_1x,$ 

follows directly from the definition of the running polynomial. Now (ii) follows by 
induction on m since the case m = 1 is obvious. 0 

1.5. Lemma. If xl, . . , xk, y, ZEX, where k is an even positive integer then 

x1 . . . XkZyZ - 4x2 . . &zy}z - (- l)k’2X1yXk-1Xk . . . x3&$zx2z 

lies in the linear span in Ass(X) of the elements 

xlyxo(2) ... ~~(i-1){z~~(i~~~(i+1))~~(i+2) ... xo(k)z, 

where CT is a permutation of 12, . . . , k}. 

Proof. Recall that, by definition of the running polynomial, we have 

XrJ’Rz(&, . . . > x3)x2z =Xly[ZXkXk&l . . . x3+(-1) (k’2) - 2 xk _ 1 xk . ..x3x4z]x2z. 
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and then 

X[ . . . &ZYZ = _‘cr {x2 . . . X@J+ - XryZXk . . . x2.r 

= X1 (x2 . . . XkzJ’jz - Xry&(Xk, . . . , X3)X$ 

+ (- l)k’2XrJ~Xk_rXk . . . X3X4ZXzZ. 

Now the result follows from (1.4) (ii) since x1 yR,(&, . , x3)xzz is in the linear span of 

the elements 

XI J’Xm(2) ... Xo(i- I){ZXo(i)Xo(i+ 1)}Xo(i+2) ... Xo(k)z, 

where u is a permutation of {2, . , k). 0 

We will use the previous result in the next theorem which extends to an arbitrary 

odd II [4, 12.5 (ii)]. 

1.6. Theorem. Let n he an odd positive integer. 
(i) E, is an outer ideal of SJ(X) and 2E, c T,,. 

(ii) If 3 E @ then E, = T,,. 

Proof. (i) We know from (1.2) that E, = T1. We will show that &+ 1 is an outer ideal 

of SJ(X) for every even k. Let p E Ek+ 1, a,, . . . , ak, be SJ(X). By taking traces in (IS), 
using p E E, + 1 and (1.3) we obtain 

(ur . . . u,bpb] - {u&z2 . a,bp}b) -(- l)k’2(u,puk-& . . . u+4buzb)ESJ(X). 

Moreover, 

{al{u2 . . . ukbp]b} f: (ulpu&luk . u3u4bu2b} 

= {al{02 . . . ukbP)b} & {alpak-l”k ... %~~(~~~2)) 

k +  I factors 

E{SJ(X)SJ(X)SJ(X)} _t &X)pSJ(X) . . . SJ(X)) c SJ(X) 

by (1.3) since p E Ek + I and we have shown U,p = bpb E Ek + 1. This proves that E, is an 
outer ideal of SJ(X) since SJ(X) is unital. Now 2E, c T,, since 2E, is an ideal of SJ(X) 
by (0.5). 

(ii) Follows clearly from (i). 0 

Some reverse inclusions of (1.2) are given in [4, 12.51 while in the linear case the 
equalities T4 = T5 = T6 = T, are part of the Jordan folklore. Our next results are 
aimed at strengthening and unifying the previous assertions. 

1.7. Lemma. For any integer n 2 2, x1, . . , x,EX, 

i~2(-l)(i-1)(i+2’;iX~ . ..Xi+lWx.(.‘C1, . . ..Xi-1)=X. .~~X1-(-l)(n-l)n’ZX1 . ..X.. 
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Proof. We will carry out an induction on II. For n = 2 our assertion is just the 
definition of the walking polynomial W,..(xr) = x2x1 + x1x2. Let us assume the 
equality for some n 2 2. Now 

ir, (- 1)‘i~1”i+2”2X~+~ ... Xi+l~_~,(Xl, ...) Xi-l) 

= X,+1 ( j2 (- l)'i-1"i+2"2X~ .,. Xi+1 W_y,(Xl, . . . ) Xi-I) ) 
-t (- l)n’n+3”*Wx”,,(X1, . . . ,x,) 

=x,+1 (x, . x1 - (- l)*‘n-l’nXr . . . x,) + (- l)n’n+3”2(X,+tXr . . . x, 

+ ( - l)“- ’ x1 . x,+ I ) (by the induction assumption) 

=x n+,~, . . . x1 + (- l)n’n+3)‘2+n-1~1 . . . x,+~ (sincefn(n + 3) 

- f(n - 1)n = $n’ + 3n - (n2 - n)) = 2n) 

=x,+1 . ..Xl + (- l)‘n’+5”-*“*X, . . . +&I+ 1 

=x n+1 ..’ Xl - (- l)‘n’+n”2Xr . . . x,+, (since +(n2 + 5n - 2) 

- f(n* + n) = f(4n - 2) = 2n - 1). 0 

Given an associative n-tad a, . . . a,, for a,, . . , a, E SJ(X), the polynomial 

am ... {ao(i)ao(i+l’) ... %,n’ 

obtained by a permutation CT of the indexes and a Jordan product a,‘i)oa,‘i+ r) = 
{a,‘i)a,‘i+ r,} will be called a reduction of a, . . . a,. 

1.8. Proposition. Let n be a positive integer, x1, . . . , x, E X. 
(i) Zf n =4k or n =4k + 1 for some integer k, then 2x, . . . x, - (x1 . . . x,,) is 

a linear combination with coejficients f 1 of reductions of x1 . . . x,. 

(ii) If n = 4k + 2 or n = 4k + 3 for some integer k, then {x1 . . . x,) is a linear 

combination with coeficients rf: 1 of reductions of x1 . . x,. 

Proof. Notice that n = 4k or n = 4k + 1 if and only if (- l)1i2’n-1)n = 1 and 
n = 4k + 2 or n = 4k + 3ifand onlyif(- 1)1/2’n-1’n = - 1. Now,apply(l.7)and(l.4) 

(9. q 

1.9. Theorem. Let k be a positive integer. Then 

(9 2T4k c J%~+I, 2T4~~ G E4k+2 und 2T~+2 c J&+3 
(ii) If PIE@ then TAk = T4k+l = T4k+2 = T4k+3. 

Proof. (i) If n = 4k or n = 4k + 1 then 

2x’)xr . . . x, - xo{xl . . . x,} = x0(2x1 . . . x, - {x1 . . . xn}) 



8 J.A. Anquela et al. /Journal of Pure and Applied Algebra 125 (1998) 1 -I 7 

is a linear combination of reductions of x0 . . . x, by (1.8) (i). Putting p E T, instead of 

x,, evaluating xi t-+ aiE SJ(X) (i = 0, . . , n - 1) and taking traces yields by (0.3) that 

(a0 . . . a, _ 1 2p) is {a0 { a1 . a,_ 1p>) plus a linear combination of traces of reductions 

of a, . a, _ 1p, which are Jordan polynomials since p E T,, and hence {aipj E T,, for any 

ai. Thus 2peE,+i. 

Ifn=4k+2then{x1 . ..x.+i)’ 1’ is a mear combination of reduction of xi . . x, + 1. 

Thus any evaluation xi ++ Ui E SJ(X)(i = 1, . . . , n), x,+ 1 F+ p E T,, is a linear combi- 

nation of reductions of a, . . . a,p. By (0.3) taking traces gives that 

{a1 . . . a,2p} = 2{Ui . . . a,p) = (ia1 .., a,p}] 

is a linear combination of traces of reductions of al . . a,,~, which are Jordan 

polynomials since pi T,, implies {sip} E T, as above. 

(ii) Recall that T,, is an ideal of SJ(X), which is contained in Ebk+ 1 by (i) if t E @. 

Hence Tbk s Tbk+ 1. Similarly, Tbk + 1 G TAk+ 2 G Tbk + 3. But Tdk+ 3 s Tbk by (1.2) 

(2). 0 

1.10. Corollary. Ifi~ @, then 

(iI Tbk = Thk+, = TdLf2 = Tdk+3 = E4k+l = E4k+2 = Edk+ 3 for any positive inte- 

ger k. Notice the equalities in the chains given in (1.2) 

E TM = Tz~+i = Tdk+z = Thk+3 G 
. UI II II I/ ..’ t 

E J% G &+I = J%+Z = -&+3 c 

(ii) E ,,+ 1 L T,, for any positive integer n. 

Proof. (i) follows from (1.9) and (1.6). Indeed, Eak+ 3 E Ebk+ 2 G Edk+ I by (1.2)(l), but 

Ebk+i = Tbk+r> E4k+3 = Tbk+3 by (.16)(ii), and T4k = Tzn+i = Tak+z = Tdk+z by 
(1.9) (ii). 

(ii) The cases n = 4k, 4k + 1, 4k + 2 follow from (i). If n = 4k + 3 then E, = T,, by 

(1.6) and E,+1 G E, by (12)(l). 0 

1.11. Remarks. (i) A result analogous to Lemma 1.7 can be obtained for the running 

polynomial: For any positive integer m, xi, , x2,,,+ 1 E X, 

jl (- 1)i-1Rx2,-,(XZi, -%+I3 ... ~X2m+l)X2i-2X2i-3 ... X2xl 

II-1 

+ (- 1)” c X2j+lRxz,(X2j+3,X2j+2,X2j+S,X2j+4, ... ,X2m+ltX2m) 

j=l 

XX2j_1X2j_2 . . . X2X1 

= Xl . . XZrnf 1 + (- l)mp1X2m+ 1 . . . Xl. 

If we call a 2-reduction of a given associative n-tad a, . . . a,(n 2 3, al, . . , a, in 

SJ(-V) the polwo~al~(l) . . . (ao(i)ao(i+ l,ao(i+2)} . . . aa obtained from a permutation 
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c of the indexes and a ternary Jordan product { a,(i)a,(i + i) a,(i + 2j >, then the following 
partial improvement of Proposition 1.8 can be obtained from the above formula: 

(i’) Zf n = 4k + 1 for some integer k, then 2x1 . . . x, - {x1 . . . x,} is a linear combi- 

nation with coejjicients f 1 of 2-reductions of x1 . . . x,. 

(ii’) Zf n = 4k + 3 for some integer k, then (x1 . . . x,} is a linear combination with 

coqjjficients f 1 of 2-reductions of x1 . . . x,. 

(ii) In the proof of (1.9)(i), the case n = 4k + 2 can also be proved by applying 
(1.8)(i) (or even the above (i’)) to 2x2 . . . x, - {xZ . . x,) and multiplying by x0x1, 
which yields that 2x0 . . x, - x0x 1 {x2 . . x,) is a linear combination of reductions of 
x0 . . . x, and then proceed as in the case n = 4k or n = 4k + 1. 

(iii) Neither (1.8)(i), (ii) nor its partial improvements (i’), (ii’) can be used to obtain an 
analogue of (1.9)(i) for n = 4k + 3. 

2. Imbedded n-tad eaters 

2.1. A Jordan polynomial p( yl, . . , y,,,)~ SJ(X), y,, . . . , y,,,eX is called an imbedded 
n-tad eater if 

k 

{Zl . . . Z,Xl . . X,_lPUl .., u,} = c {zl . . . 
i=t 

where pj(x,, . . . ,x,-i, y,, . . . , yrn)~ SJ(X), for arbitrary positive integers r, s and 

Zl, ... , z,, Xl, ... ,X,-l, Ul, ‘.. , U,EX. 

2.2. A Jordan polynomial p(y,, . . ,~,)ESJ(X), yi, . . . , ymeX is called an usso- 
ciative n-tad eater if 

x1 . . . xn_lp = 1 p;p;p:, 
i=l 

where pj(x,, . . . , x,_ 1, y,, . . , ym)e SJ(X) for arbitrary x1, . . . , x,_ 1 EX. By using 
the universal property of Ass(X), a Jordan polynomial p( yl, . . , ym) is an associative 
n-tad eater if 

SJ(X) . . SJ(X)p c SJ(X)SJ(X)SJ(X). 

The next result shows that the notions defined in (2.1) and (2.2) coincide. 

2.3. Proposition. A Jordan polynomial p(yl, . . . , ym)e SJ(X), y,, . . , y,,,~x is un 
associative n-tad eater if and only if it is an imbedded n-tad eater. 

Proof. It is clear from the definition that associative n-tad eaters are imbedded n- 
tad eaters. We will show the converse. Let a, b, x1, . . . , x,_~ EX\{~~, . . . , y,], 
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a #b, a, &(x1, . . . , x, _ r ) and assume that p( y, , . , ym) is an imbedded n-tad eater. 

Hence 
k 

[axI . x,_IpbJ = c (apfpjpib), 
i=l 

where &x1, . 3x,-l,Yl, ‘.. 3 y,) E SJ(X). Comparing in the previous equality the 

associative monomials beginning with a yields 

k 

ax, . . . x,_Ipb = C apfpipib. 
i=l 

Thus .x1 . . . x,_ rp = I:= 1 pf pipi and p is an associative n-tad eater. 0 

2.4. The set of imbedded n-tad eaters is a submodule of SJ(X), denoted by IE,, whose 

core will be denoted by I,. As for n-tad eaters the following chains of containments 

hold 

SJ(X)=ZEI=IEz=IE3~IE4~IES~ . . . , (1) 

SJ(X) = I, = Iz = I3 1 Z4 2 I5 2 . . . . (2) 

We also have the obvious relation between n-tad eaters and imbedded n-tad eaters 

IE, G E,, 1, c Tn, (3) 

for all n (cf. [4, 13.1, 13.21). 

2.5. It is not known whether an element pole,, eats imbedded n-tads (equivalently, 

with a proof like the one in (2.3), associative n-tads) from any position. But this is true 

if pEZ,: 
n faclors 

h r ‘I 

SJ(X) . . . SJ(X)pSJ(X) . . . SJ(X) E SJ(X)SJ(X)SJ(X). (1) 

We remark that the above property holds for any p lying in an outer ideal B of 

SJ(X) contained in ZE, (cf. [4, 12.141): If 

u1 . . . arpar+2 . . . u, E SJ(X)SJ(X)SJ(X) 

for any al, . . . , a,, art2, . . . , a, E SJ(X) and any p E B, then 

a1 . . . a,_lpa,a,+2 . . . a, = uI . . . a,_l(a,cp)a,+2 . . . a, - aI . . . arpar+2 . . . a, 

= la,. ... a,._l(arop)ar+2 . . . a, - al . . . a,pa,+2 . . . a,ESJ(X)SJ(X)SJ(X) 

since a, 0 p E B. 

Anyway, for an arbitrary p E IE,, p eats associative n-tads from positions’ numbers 

1, 2, 3, n - 2, IZ - 1 and n: 

a, . . . a,_ ip, a, . . . an-zpan- lr al un-3pan-2an- 1 E SJ(X)SJ(X)SJ(X), (2) 

pa, . . . a,- 1, alpa . . . a,- 1, u1 azpa3 . . . a,_ 1 E SJ(X)SJ(X)SJ(X), (3) 
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for any a,, . . . , a,_, E SJ(X). Indeed a, . . . a,_ I p E SJ(X)SJ(X)SJ(X) by (2.3). Now 

a, . ..a._,pa,_,=(u,...u,_~p}a,-1-{pa,_, . ..u.u,_,}+u,-la, . ..U.-zPE 

SJ(X)SJ(X) + SJ(X) + SJ(X)SJ(X)SJ(X) c SJ(X)SJ(X)SJ(X) 

by (1.3) since pole, c E, c E,_,. Similarly, al . . . u~-~Pu~-~u~-~ lies in 
SJ(X)SJ(X)SJ(X), and (3) follows from (2) by applying the standard involution. 

In the next result we study the converse of (2.4)(3). 

2.6. Theorem. Let n 2 3 be a positive integer. 

(i) 2”-3E, c IE,, 2”P3 T,, s I,. 
(ii) If +E@ then E, = IE,, T, = I,. 

Proof. (i) By (1.2) and (2.4) the result is clear for n = 3. Now we will carry out an 
induction on n. Let n 2 4 and assume (i) for indexes less than n. Let 

;IIi.b)(i) ’ 
u,_ 1 E SJ(X), p E E,. Assume first M = 4k or n = 4k + 1 for some integer k. By 

a, u,_12”-3 p - {Ul . . . qP12”-4pj 

is a linear combination of reductions of a, . . . a, _, Pe4p. Any such reduction is an 
associative (n - 1)-tad containing either 2 n-4p or {ai2”-“p} = 2”-4{aip}. If n = 4k 
then, by (1.6) and the induction assumption, 2 n-4 E,_ 1 is an outer ideal contained in 
ZE,_ 1, and 2”-4p, {Ui2”-“p} E 2”-4E,_ 1. If n = 4k + 1 then 2”-4E, is an outer ideal 
by (1.6) 2”-4p, {ai2”-“p> E~“-~E, and 2”-4E, E 2’-4E,_ 1 E IEn_, by the induction 
assumption. By the remark following (2.5)(l), 2”-4p, {Ui2”-4p) eat associative (n - l)- 
tads from any position and the above-mentioned reductions lie in SJ(X)SJ(X)SJ(X). 
Now, the n-tad {ui . . . u,_ 12”-4p} lies in SJ(X)SJ(X)SJ(X) since 2”-4pe E,, hence 

a, . . q-,2”-3p~SJ(X)SJ(X)SJ(X), 

showing 2”- 3p E IE, (by (2.3)). 
The cases n = 4k + 2 and II = 4k + 3 follow analogously by applying (1.8)(i) to 

Nj . . . u,_,2”-3 p - {a3 . . . u,_,2”-4p} 

to show that 

U1 . . . U,_12”-3p - UlUz(U3 . . . U,_~2”-4p} 

is a linear combination of reductions of al . a,- I 2”-4p, and noticing that 

ui02, ‘U 3 . . . a,_ 12”-4p} E SJ(X)SJ(X)SJ(X) 

since {u3 . . . a,_12”-4p)~SJ(X) by 2”-‘PEE,, c E,_,. 

(ii) Is straightforward. 0 

The analogue of (1.6) is even stronger for imbedded n-tad eaters. 
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2.7. Theorem. For any positive integer n # 4, IE, is an inner ideal of SJ(X). Moreover, 

if n is odd then IE, is an ideal of SJ(X), i.e., IE,, = I,. 

Proof. We will show that ZE, is an inner ideal if n # 4. The result is known for n = 1, 

2, 3 (see (2.4)), so we will assume n 2 5. Let PE IE,, aI, . . . , a,_ 1, be SJ(X). Now 

a, . . . a,_,pbp = (ala2 . . . a,_,p)bpESJ(X)SJ(X)SJ(X)bp G SJ(X)SJ(X)SJ(X) 

since peiE, G ZE5 and we have shown U,b = pbpEZE,,. 

The proof of (1.6)(i) without taking traces applies here with obvious changes to 

show that IE, is an outer ideal when n is odd. We know from (2.4) that IE, = I,. We 

will show that for any even k, IE,, 1 is an outer ideal of SJ(X). Let PE IE,, 1, 

al, . . . , ok, bESJ(X). By (1.Q using p E IE,, t and (2.5)(3), we obtain 

a1 . . . akbpb -a, {uz . . . a,bp)b - (- l)ki2alpak-1uk . . . u3a4ba2b 

E SJ(X)SJ(X)SJ(X). 

Moreover 

al(a2 . . . a,bpjb k alpakmlak . . . a3a4ba2b 

ZZ a1{a2 . . . a,bp}b AI alp+-lak . . . a3a4(Uba2) 

k + 1 factors 

r 
* 

\ 

E SJ(X)SJ(X)SJ(X) &- SJ(X)pSJ(X) . . . SJ(X) 5 SJ(X)SJ(X)SJ(X) 

by (2.5)(3) and PE IEk+l G Ek+l. So we have shown Ubp = bpb E IEk + 1. This finishes 

the proof since SJ(X) is unital. 0 

The proofs of (1.9) and (1.10) without taking traces also apply for imbedded n-tad 

eaters, so that one readily obtains. 

2.8. Theorem. Let k, n be positive integers. Then 

(i) 214k c IE4k+l, 214k+~ c IE4,+2 and 214k+, c IE4k+3. 
(ii) Zf + E @ then I 4k = 14,k+l = I4k+2 = 14k+3 = I&k+1 = I&k+2 = I&k+3 and 

IEn+ t E I,. 

Note that (ii) also follows from (1.10) and (2.6) directly. 

3. Hearty eaters 

3.1. A (unital) adic family on the free special Jordan algebra SJ(X) is a family of 

n-linear maps Fn: SJ(X)” + V into some G-module I/ for all n 2 1 having the unital 
Jordan-alternating properties 

(AI) F”(... ,l, . ..)=Fnpl( . . . . . ..) 
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(AII) F,( . . . . a,a, ...)=Fn_l( . . . . a’, . . . ) (it is a consequence of (AI) and (AIII)) 

(AIII) F,,( . . . ,a, b,a, . ..) = Fn-2( ... , U,b, . ..) 

(and therefore by linearization also) 

(AII’) F,,( . . , a,, a2, . . . ) + F,,( . . . , u2, a,, . . . ) = F,-,( . , {ulu2}, ) 

(AIII’) F,( . . . . u,,u2,u3, . ..)+F.( . . . . u3,u2,ul, ...)=F,_2( . . . . (a,u2u33, . ..). 

In [4, p. 1881, McCrimmon and Zelmanov give two more conditions called (AIV) 

and (AV) on compatibility of the maps F, with tetrads and pentads. Our definition is 

just apparently more general. Indeed we will show below (see (3.7)) that, for adic 

families on SJ(X), (AIV) and (AV) are consequences of the previous axioms 

(A I)-(AIII). 

3.2. The families of n-tads, imbedded n-tads and associative n-tads are clearly exam- 

ples of the adic families on SJ(X) where I/ = Ass(X). 

3.3. If 9 is a collection of adic families on SJ(X), we say that p(y,, . , yrn)~ SJ(X) 

(yi , , y, E X) eats S-n-tads if 

FAX 19 ... >xn-I,P)= i: F~(P:,P~,PS)EF~(SJ(X),SJ(X),SJ(X)) 
i=l 

forsomepj(xi, . ,x,_i,yi, . . ,Y,)ESJ(X),X~, . ,x,-~~X\{Y~, . ,y,f,forw 

, n,,, z , E F. When 9 consists of all possible adic families we will call such ‘F 1 

a p a hearty n-tad eater. The set XE, of all hearty n-tad eaters is a submodule of SJ(X) 

whose core will be denoted by .?P*. Again, these are linearization-invariant ideals 

invariant under all endomorphisms and derivations of SJ(X) [4, p. 1891. 

Our aim is to show that all adic families can be reduced in a certain sense to the 

adic family of associative n-tads so that hearty n-tad eaters are just imbedded n-tad 

eaters. 

3.4. Let F = {Fn},L t , be an adic family on SJ(X) into I/. We define a product in the 

direct sum of @-modules Ass(X) @ V by 

(Xl . . . xn + ~(YI . . . Y, + 4 = XI X,YI . . . y, + F,,+m(xl, . ,xn,yl, . . . ,ym) 

(1) 

(1 + U)(X1 . x, + u) = (x1 . . . x,+l;)(l+u)=xl . ..x.+F,(x,, . . . . x,) (2) 

for any x1, . . . ,x,, y,, . , y,~ X, extended to Ass(X) @ I/ by bilinearity. It is 

straightforward that the algebra obtained is associative. Let 

cpF: Ass(X) -+ Ass(X) @ I’ 

be the algebra homomorphism extending the map 

X + Ass(X) 0 I’, xi H xi + Fl(xi). 
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It is clear that qF is injective, so that the image cpF(Ass(X)), denoted by As+(X), is 

a subalgebra of the one defined by (1) and (2), isomorphic to Ass(X). Namely, the 

algebra isomorphism 

qF : Ass(X) + Ass,(X) 

is given by 

1 w 1 + F,(l) 

x1 x, H x, . x, + FJX,, . . . .x,) 

for any x1, . . . , x,cX. 

3.5. Lemma. Under the conditions of (3.4) 

(PAPI ... P,) = ~1 . . . in + F,(P~, . . . > P~)EASSFW) 

for anal pl, . . . , p,, E SJ(X). 

Proof. By multilinearity of the product in Ass(X) and F,, we can assume that 

p1, ... , pn are Jordan monomials (see (0.4)) d i erent from 1. We proceed by induction ff 

on 1~ = (EYE1 degpi) - n. Ifm = 0 then pi, . , p,, E X and the result follows from the 

definition of 40~. Let m 2 1. Then there exists jE { 1, . . . , n> such that degpj 2 2. We 

must consider four different cases: 

pi = N2, m h, U,h, Uo.hG 

where a, h, c are Jordan monomials and dega, deg h, degc < degpj. If pj = a2 then 

~1 IL + F,(PI, . , pN) = PI . . pj- ,a2pi+ I . pn + F,(pl, . . . 

=pl . pj-lUUpj+l . . . pn + F,,+I(PI, ... ,pj-l,a,a,pj+ 

ZI VDF(P~ . PJEASSFW) 

by the induction assumption. The cases pj = a0 b, U,b, U,l,c 

induction assumption after applying (AH’), (AIII) and (AIII’), 

2 
)Pj-l,a ,Pj+t3 ... > PII) 

1, . >P,,) (by WI)) 

also follow from the 

respectively. 0 

3.6. Theorem. For any integer n 2 1 

IE, = ZE, and I, = SF,,. 

Proof. From (3.2), ._%E, G I& and .yi”, c_ I,. Thus, let P(Y I, ‘.. > Y,)ESJ(X) 
(yi , . , ym E X) be an imbedded n-tad eater. By (2.3) p eats associative n-tads, so that 

k 

x, . . . xn_lp = c q’lq; q;, 
i=l 

(1) 
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where &xi, . . >&-l,Yl, ... 3 y,,,) E SJ(X),xi, . . . , x,_~ ~X\[yi, . . . , y,). Now,for 

any adic family F the isomorphism (Pi applied to (1) yields 

k 

X] Xn-1p + F,(Xl, ....x,-*.P)=i~~qi(12qi3+ i: w7hh:) 
i=l 

using (3.5). Hence, 

and p eats F - n-tads. We have shown IE, G XE,, from which I, G ,ri”, is clear. 0 

3.7. Remarks. (i) Axioms (AIV) and (AV) of [4, 13.61 follow from (3.1) (AI)-(AIII). If 

‘F \ , n,,izI is an adic family on SJ(X) in the sense of (3.1) and al. . . . , uk E SJ(X) satisfy 

[u, . . . Uk) E SJ(X) then 

F,( . . . . a,, . . . . ‘&, . ..)+F.,( . . . . ak, . . . . Ul, ...)=Fn-ck_lj( . . . . {U1 . ..ak). . ..) 

(1) 

using (3.5) when qDF is applied to the equality 

. . . Ll1 . . . ak . + ar, . a, . = . . . (al . . &) . 

in Ass(X). 

(ii) It is not true that for adic families on arbitrary special Jordan algebras the 

axioms (AIV) and (AV) on compatibility with tetrads and pentads are automatic. For 

example, let J and J’ be special Jordan algebras. A and A’ associative *-envelopes of 

J and J’, respectively, and ,f: J -+ J’ a Jordan homomorphism. We can consider the 

family {F, : SJ(X )” -+ A’ j ,, z , of n-linear maps defined by 

F,(.u ,, . , x,) :=f(x1) . . . .f‘(x,) 

which have the Jordan-alternating properties 

(AI) F,( . . . , 1, . ) = F,_ 1( , . . . ) (when J and J’ are unital and f’ is unit- 

preserving), 

(AII) F,( . . . , x, x, ) = F,_ 1( . . . , x2, . . ). 

(AIII) F,,( . ,x, y, x, . . . ) = Fnp2( . , U,y, . . . ). 

But {&,I,,, 2, is compatible with tetrads 

(AIV) F,( . , x1, x2, x3, x4, . ) + F,( . , x4, .x3, x2, x1, . . . ) = Fnp3( , 

jx,x2.q x4], . . . ) whenever {x1x2x3x4J E J, 
if and only if f preserves tetrads 

.O{xlx~x~xqJ) = .i(,f(X,)f(x2)f(x3).f(Xq)) whenever (x~x~x~.LI)EJ. 

Since examples of Jordan homomorphisms not preserving tetrads are known [3, 

Example in p. 459, Remark 1.71, the existence of families {Fn},? 21 not compatible with 

tetrads and satisfying the Jordan-alternating properties (3.1) follows. 
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(iii) However, there exists a large class of special Jordan algebras in which every 

family satisfying the Jordan-alternating properties is compatible with tetrads and 

pentads. Following [3] a special Jordan algebra J is a T-algebra if J equals T(J) the 

ideal generated by all values Z48(u1, . . . , u12) for UiE J, where Z4s is a precise 

Zel’manov polynomial given in [4, pp. 192, 1951 (see also [l, p. 1821). More generally, 

let .I satisfy 

J = E,(f) (1) 

(in particular, any T-algebra satisfies the above equality since ET E E5 [4,14.2]), A be 

a *-envelope for J, and {F,,}, >, be a family of n-linear maps on J into a Q-module 

I/ satisfying the Jordan-alternating properties (3.1). We note that for any map f from 

X into J, an adic family {FL}, z, on SJ(X) can be obtained by 

FX(Pl, ‘.. ,Pn) = F”(3(Pl)? ... ,3(P"h 

for pin SJ(X), where3is the unique algebra homomorphism extension off to SJ(X). 

Now, fix al, . , ak, bl, b2, b3, b4, dl, . . . , dl in J for some rr = k + 4 + 1. By (l), 

there exists p(zr , . . . , z,) in the submodule E5 of SJ(X), and cl, . . , c,EJ, such that 

b4 = P(cr, . . . , c,). We choose pairwise different xl, . . . ) xk, Yr, Y2, Y3,zl, . . . , z,, 

tr, , tr E X and consider the map f: X + J sending Xi ++ ai (i = 1, . . . , k), yi t+ bi 

(i = 1, 2, 3) Zi H Ci (i = 1, . . . , m), ti H di (i = 1, . . . , I), and u b 0 for all 

UEX\(XI, . ) xk, 4’1, y,, y,, zl, ‘.’ 3 z,, ll> ... , tlj. So, we have 

F”(Ul, ..., ak,b,,bz,b3,Ld,, . . ..d.)+P’&,, ...,ak,b4,b3,62,bl,dlr . . ..d.) 

=&(3(x,), . . ..f(Xk).3(yl),f(y2),j‘(y3),~(P(Zl, -~tzmh3h)> ..'> 3@d 

+ m3h)> ...> .hk)>.hh ..‘) zin)),3(Y3)r3(Y2)>3(Yl),3(tl)~ . ..>3(tl)) 

==&!?xl, ...,xk,Yl,y2,y3,p(z1, .~~,Zm),tl, . . ..tl) 

+Eh, .-.,Xk,PfZ,, . . ..Z.),Y3rYz,Yl,rl, .--,[I) 

= F{_,(xl, . . . > xk, (YlY2Y3P(zl, . ..> %I))> rl, ...> rl) 

({Fi} is an adic family on SJ(X), hence it is compatible with tetrads, and 

the element {yly2Y3P(zl, . ,G)}ESJ(X) by (1)) 

= F,-,(j‘(Xr)> ...,3(Xk),3(iYlY2Y3P(Z1, ..A)j),f(t~), . . ..3(t.)) 

==F,-3(a1, . . ..ak. {Wd3b4},&, . ...4, 

where for the last equality we use the fact that if 

{YLY2Y3P(Zl> ... , zm,} = 4~1, YZ, ~3, z> . . . . z,)ESJ(X) 

then 

J({YlY2Y3P(% ... > &n,>, =3(4(~1, ~2, ~3, ~1, . . . 2 zm)) 

= 4(f(Y1),~(Y2),.f(Y3),f(Z1), ...) fbn)) 
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=db~,b,,bz,cl, . . ..c.) 

= {b, bxb&, 3 . . ..c.)) = {blbZb3b4}d. 

Analogously, it is proved that { Fn3 is compatible with pentads. 
(iv) The construction of Ass,(X) provides a way to obtain any adic family {F, jn > , 

in SJ(X) from the adic family {A,,},, >, consisting of the associative n-tads 

A, : SJ(X)” + Ass(X), .4&l, . . . , a,) = u1 . . . a, 

Indeed, the maps F,,, n 2 1, are given by the compositions 

F, = rcvlcpF” A,,, 

where rtv denotes the canonical projection on I/ of AssF(X) & Ass(X) @ I/. 

3.8. Hearty Eaters for Jordan Triple Systems. The construction of the algebra 

Ass,(X) given in (3.4) obviously can be generalized to triple systems so that one can 
show (formally with the same proofs) that hearty eaters in triples [l] are exactly the 
polynomials in the free special Jordan triple systems which eat associative n-tads (of 
odd length!). As in (3.7)(i), for an adic family on the free Jordan triple system JTS(X) 
condition (T2) in [l, 3.71 is a consequence of (Tl). 

Acknowledgements 

This paper originated during the Conference “Seminario sobre Tecnicas Zel- 
manovianas en Sistemas de Jordan con Aplicacion a Algebras de Jordan Normadas” 
held at the Universidad de Malaga in June 1995. The authors wish to thank Professor 
Antonio Fernandez Lopez and the other members of the Departamento de Algebra, 
Geometria y Topologia for their hospitality. The authors also thank Professor Angel 
Rodriguez Palacios for his valuable comments during the preparation of this paper. 

References 

[l] A. d’Amour, Zel’manov polynomials in quadratic Jordan triple systems, J. Algebra 140 (1991) 160-I 83. 

[2] A. d’Amour, Quadratic Jordan systems of hermitian type, J. Algebra 149 (1992) 197-233. 

[3] K. McCrimmon, The Zelmanov approach to Jordan homomorphisms of associative algebras, 

J. Algebra 123 (1989) 4577477. 

[4] K. McCrimmon and E. Zeimanov, The structure of strongly prime quadratic Jordan algebras. Adv. 

Math. 69(2) (1988) 133-222. 

[S] A. Moreno, Algebras de Jordan-Banach primitivas, Doctoral Thesis, Universidad de Granada, 1995. 

[6] E.I. Zelmanov, On prime Jordan algebras II, Siberian Math. J. 24 (1983) 899104. 


